

Definitions and Concepts for Edexcel Chemistry A-level

Topic 12: Acid-Base Equilibria

Bronsted-Lowry Acid: A proton donor, e.g. $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$.

Bronsted-Lowry Base: A proton acceptor, e.g. $C_6H_5NH_2 + H_2O \stackrel{<}{=} C_6H_5NH_3^+ + OH^-$.

Conjugate acid/base pair: Two species that differ by H^+ . We can have an acid and its conjugate base (e.g. H_3O^+ and H_2O), or a base and its conjugate acid (e.g. NH_3 , NH_4^+).

pH: A figure expressing the acidity or alkalinity of a solution on a logarithmic scale on which 7 is neutral, lower values are more acidic and higher values more alkaline.

pH = ⊣og₁₀ [H⁺]

Ka: The acidic dissociation constant, $Ka = ([H^+][A^-])/[HA]$. Taking the negative logarithm and rearranging for pH gives: pH = pKa + log([A^-]/[HA])

pKa = $-\log_{10}[Ka]$, the lower the value, the stronger the acid (as equilibrium is shifted more towards ionised products)

Kw: The ionic product of water, $Kw = [H^+][OH^-]$, at 298K, $Kw = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$

 $pKw = -log_{10}[Kw]$, and so pH + pOH = 14 at 298 K

Lewis Acid: Electron pair acceptor.

Lewis Base: Electron pair donor.

e.g. NH_3 (Lewis base, donates a free electron pair) + BH_3 (Lewis acid, has no electron pairs, accepts an electron pair from ammonia) $\rightarrow H_3N$ --- BH_3

Strong acid: Acid which completely dissociates in water.

e.g. $HCI \rightarrow H^{+} + CI^{-}$

Strong base: Base which completely dissociates in water.

e.g. $NaOH \rightarrow Na^+ + OH^-$

Weak acid: Acid which dissociates only slightly in water (reversible reaction).

e.g. $HCN \rightleftharpoons H^+ + CN^-$

Weak base: Base which is only slightly protonated in water (reversible reaction).

e.g.
$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

pH of a weak acid: Can be calculated from the Ka. We define Ka as:

Ka = ([H⁺][A[−]])/[HA]

Then, if the H^+ produced by dissociation of water $|(H_2O \rightleftharpoons H^+ + OH^-)$ are negligible, we can assume: $[H^+] = [A^-].$

www.pmt.education

In addition, we can postulate that the acid is weak, so the concentration of undissociated acid molecules, **[HA], will be approximately the same as the initial acid concentration, c**. These two assumptions lead to:

Ka = [H⁺]²/c

from this, [H⁺] = (Ka x c)^{0.5}

And pH = -0.5log(Ka x c).

Amphoteric: Refers to a substance that can act as an acid or a base, e.g. HCO_3^- ; it can accept a proton and form H_2O and CO_2 , or donate a proton and form $CO_3^{2^-}$.

Monoprotic acid: Can release only one H⁺ upon dissociation, e.g. HCl.

Polyprotic acid: Can release more than one H^+ upon dissociation, e.g. H_2SO_4 .

Equivalence point: The point when full neutralisation occurs, e.g. when titrating an acid with a base, it is the point when all acid has been neutralised, and so $[H^+]=[OH^-]$.

End point: The point during the titration when the indicator changes the colour. A suitable indicator should change colour near the equivalence point (so should have a pH range within the pH change during the equivalence point).

Buffer: A solution which resists change in pH when small amounts of strong acid/base are added.

Acidic buffer: A buffer containing a weak acid and its conjugate base, e.g. a solution of acetic acid and sodium acetate.

Alkaline buffer: A buffer containing a weak base and its conjugate acid, e.g. a solution of ammonia and ammonium chloride.

Preparation of buffers: E.g. when preparing an acetate buffer (CH_3COOH/CH_3COONa), one can either add a suitable amount of salt to the suitable solution of the acid, or react an acid with a strong base as a limiting reagent.

🕟 www.pmt.education